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Mini Review

Introduction
Artificial intelligence (AI) has rapidly evolved into a pivotal in-
novation within the healthcare landscape, offering the ability to 
process complex clinical data, recognize subtle patterns, and sup-
port clinical decision-making processes with remarkable accuracy. 

Its integration into medicine has transformed diagnostic accuracy, 
optimized therapeutic planning, and enhanced healthcare delivery 
across multiple specialties.1 AI encompasses a wide range of tech-
nologies designed to mimic cognitive functions such as learning, 
reasoning, and problem-solving.2 Within this framework, machine 
learning (ML) and deep learning (DL) represent two of the most 
influential and widely adopted subfields. ML involves algorithms 
that learn from data inputs to make predictions or decisions without 
being explicitly programmed. By developing mathematical models 
based on training datasets, ML systems are capable of improving 
their performance over time.3,4 As neural network architectures ad-
vanced, DL emerged as a powerful extension of ML. DL utilizes 
multi-layered neural networks that can hierarchically extract fea-
tures from complex data, mimicking the processing mechanisms 
of the human brain.5 This enables the automated detection, classi-
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fication, and segmentation of biomedical images with exceptional 
accuracy, making DL particularly suitable for image-intensive spe-
cialties such as endoscopy, radiology, and pathology.2

AI consists of diverse branches, each with potential applications 
in both clinical and academic settings within digestive health.6 In 
the domains of gastroenterology and hepatology, the application 
of AI has progressed significantly, driven by the availability of 
extensive clinical data, endoscopic imaging, and histopathological 
inputs. Recent advances have facilitated AI-assisted evaluation of 
colorectal polyps, Barrett’s esophagus, gastrointestinal malignan-
cies, and obscure gastrointestinal bleeding through capsule endos-
copy.7 In hepatology, AI is increasingly employed to detect and 
stage liver fibrosis, diagnose metabolic dysfunction-associated 
steatotic liver disease (MASLD), differentiate hepatic lesions, and 
predict outcomes related to hepatocellular carcinoma and liver 
transplantation.8 These developments are supported by the grow-
ing use of electronic health records (EHRs), advanced imaging 
modalities, and computational tools that allow real-time interpre-
tation of clinical and laboratory data.9

Despite the acceleration of AI-based tools in diagnosis and 
monitoring, nutrition, which is a fundamental component in the 
prevention and management of gastrointestinal and liver diseases, 
has not been fully integrated into these AI-driven approaches. A 
wide range of disorders, including inflammatory bowel disease 
(IBD), irritable bowel syndrome (IBS), MASLD, celiac disease, 
and gastroesophageal reflux disease (GERD), are significantly 
influenced by dietary factors.10–15 Conventional dietary recom-
mendations often rely on generalized guidelines that fail to address 
individual variation in metabolism, genetic makeup, microbiota 
composition, and lifestyle behaviors.5

The field of personalized nutrition has emerged in response 
to these limitations, aiming to tailor dietary advice based on in-
dividual biological characteristics. AI provides the computational 
foundation necessary to operationalize this approach at scale. By 
integrating data from genomics, transcriptomics, metabolomics, 
wearable sensors, and microbiome sequencing, AI-based systems 
can generate personalized dietary strategies with the potential to 
improve disease outcomes and patient adherence.5,16,17 In IBS, 
for instance, ML models have been developed to identify dietary 
triggers and correlate them with symptom patterns, supporting 
more targeted nutritional interventions.1 Similarly, in MASLD, AI 
technologies are being evaluated for their ability to predict treat-
ment response to specific nutritional regimens, including calorie-
restricted and macronutrient-modified diets.18,19

Further advancements in generative AI and natural language 
processing have expanded the accessibility of tailored dietary 
guidance. Large language models (LLMs) such as ChatGPT and 
structured systems like ChatDiet are being developed to offer real-
time, multilingual, and culturally adaptive nutrition counseling.18 
These tools have demonstrated utility in addressing barriers related 
to healthcare accessibility and can assist in behavior change and 
continuous monitoring, particularly in underserved or resource-
limited settings. Additionally, mobile applications that incorporate 
AI algorithms, such as Cara Care and Gali Health, enable real-time 
symptom tracking and offer decision-support features that enhance 
patient engagement in IBD and IBS management.20

Despite this growing interest, significant challenges continue to 
limit the widespread implementation of AI-driven personalized nu-
trition. Notably, existing literature often focuses on diagnostic ap-
plications, with limited exploration of nutrition-specific predictive 
modeling or intervention design, particularly in gastroenterology 
and hepatology. Additional issues include the lack of standardized 

clinical validation frameworks, limited integration into clinical 
workflows, algorithmic opacity, and ethical concerns regarding 
data privacy and equity.21,22 These gaps highlight the urgent need 
for interdisciplinary collaboration to translate computational in-
sights into actionable dietary strategies.

This review aims to synthesize recent developments in AI-driv-
en personalized nutrition within gastroenterology and hepatology, 
offering a critical overview of current clinical applications, emerg-
ing technologies, and methodological challenges. It highlights the 
growing integration of ML, LLMs, and mobile health tools into 
nutrition care. By outlining future opportunities and addressing 
key limitations such as clinical validation, data standardization, 
and ethical concerns, this review seeks to inform the development 
of more individualized, precise, and sustainable dietary interven-
tions for digestive and liver diseases.

Data source
This review was conducted using a narrative, non-systematic ap-
proach aimed at synthesizing emerging trends, challenges, and 
opportunities related to AI-driven personalized nutrition in gastro-
enterology and hepatology. To identify relevant studies, a biblio-
graphic search was performed across major scientific databases, 
including PubMed, Scopus, Web of Science, ScienceDirect, and 
Google Scholar, between January 2015 and June 2025. The search 
utilized combinations of keywords such as “artificial intelligence,” 
“machine learning,” “deep learning,” “large language models,” 
“personalized nutrition,” “precision nutrition,” “gastroenterolo-
gy,” “hepatology,” “IBD,” “IBS,” “MASLD,” “GERD,” and “celi-
ac disease.” Additional references were identified through citation 
tracking and expert knowledge. Duplicate entries were removed, 
and studies were selected based on relevance to the integration of 
AI with nutritional applications in gastrointestinal and liver health. 
This review does not follow the systematic review methodology, 
and findings are synthesized to provide a broad yet critical over-
view of current developments in the field.

Applications of AI-driven personalized nutrition in gastroen-
terology and hepatology
AI, including ML, DL, and LLMs, is rapidly transforming clini-
cal nutrition by enabling personalized, data-driven dietary inter-
ventions tailored to individual physiological, metabolic, and be-
havioral profiles in gastroenterology and hepatology.20,23 These 
advanced technologies offer the potential to move beyond general-
ized dietary guidelines and toward precision nutrition by integrat-
ing multidimensional data, including microbiome composition, 
genomics, metabolomics, dietary intake records, symptom track-
ing, EHRs, and wearable sensor outputs.18,24,25

AI applications in digestive health span three primary domains: 
(1) screening and triage of patients for specialist evaluation, (2) 
automation of repetitive and time-intensive clinical tasks such as 
food diary analysis and symptom monitoring, and (3) real-time 
clinical decision support to enhance diagnostic accuracy and ther-
apeutic planning.26 These AI functions span both diagnostic and 
nutritional domains, enhancing workflow efficiency while contrib-
uting to improved patient outcomes.26–28

Generative AI, particularly LLMs such as GPT-4 and LLaMA-3, 
is emerging as a disruptive force in clinical nutrition, capable of 
delivering real-time, multilingual, and culturally tailored dietary 
guidance. Tools like the ChatDiet system exemplify this potential 
by integrating individual and population-level data to produce ex-
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plainable, evidence-based recommendations for disease prevention 
and management.18,29 These systems enhance dietary adherence by 
embedding behavior change techniques and simplifying complex 
nutritional information into patient-friendly formats. Neverthe-
less, generative AI presents specific limitations. LLMs are prone 
to hallucinations, which may result in the generation of incorrect 
or unsafe advice, particularly for patients with complex nutritional 
needs, such as those with renal or liver disease. Additionally, their 
accuracy in low-resource languages and nuanced medical contexts 
remains limited. Ongoing solutions, such as supervised fine-tuning 
and retrieval-augmented generation, are being tested to align out-
puts with evidence-based clinical nutrition guidelines.18,20

Beyond generative AI, wearable devices, mobile health plat-
forms, and EHR-integrated AI systems are being deployed for real-
time continuous monitoring and dynamic, adaptive adjustments to 
dietary strategies.30 Devices such as smartwatches, glucose moni-
tors, and mobile food trackers provide real-time data on physical 
activity, gastrointestinal symptoms, sleep patterns, and nutritional 
intake, facilitating a dynamic feedback loop between patients and 
providers.21,31 This data ecosystem supports disease surveillance, 
malnutrition risk stratification, and treatment adherence.

AI-powered mobile tools like the Heali app have demonstrated 
improvements in quality of life and dietary adherence in IBS pa-
tients through low-FODMAP diet support, showcasing the poten-
tial of app-based AI to augment therapeutic compliance.32

In resource-limited settings, AI-driven conversational agents 
and natural language processing-based mobile applications are 
particularly valuable. They provide 24/7 dietary counseling and 
educational support, especially where access to registered dieti-
tians is scarce. These systems also facilitate remote clinical de-
cision-making by offering providers real-time access to patient-
generated dietary and symptom data over extended periods.18,20

AI’s strength lies in its ability to extract actionable insights from 
big data encompassing omics profiles, lifestyle patterns, and clini-
cal records. In gastrointestinal health, ML algorithms integrate het-
erogeneous inputs to model disease trajectories and intervention 
responses. This is particularly evident in disorders such as IBS, 
IBD, GERD, and colorectal cancer.4,33–36

Studies like that by Huo et al.35 have shown that customized 
LLMs (e.g., GERD Tool for Surgery) outperform general GPT-4 
in aligning with clinical guidelines for surgical decision-making. 
Similarly, Rammohan et al.37 demonstrated that ChatGPT-4 pro-
vided more reliable and accurate gastroenterology-related respons-
es than other generative tools, underlining the importance of model 
customization in clinical contexts.

In summary, the integration of AI technologies, from traditional 
ML models to advanced generative systems, marks a paradigm 
shift in clinical nutrition for digestive and liver disorders. These 
innovations pave the way toward precision nutrition, replacing 
“one-size-fits-all” strategies with adaptive, individualized care that 
leverages microbiome science, behavioral data, and digital moni-
toring for improved patient outcomes.

AI-powered microbiome-based personalization in gastrointes-
tinal disorders and precision nutrition
IBS exemplifies the potential of AI-driven microbiome-informed 
dietary personalization, owing to its heterogeneous pathophysiol-
ogy, which encompasses alterations in gut motility, visceral hyper-
sensitivity, immune activation, and microbiome dysbiosis. Tradi-
tional dietary strategies, particularly the low-FODMAP diet, have 
demonstrated short-term symptom relief in many IBS patients. 

However, these generalized, “one-size-fits-all” interventions fail to 
account for the interindividual variability in gut microbiota com-
position and metabolic responses, often resulting in inconsistent 
outcomes and suboptimal adherence.36 This limitation underscores 
the need for data-driven, individualized approaches that integrate 
gut microbial features into nutrition care models.

Recent clinical trials have illustrated the potential of AI-based 
personalization to outperform standard dietary recommendations 
in IBS. In a randomized controlled study, an AI-generated, mi-
crobiota-guided diet produced via the ENBIOSIS platform led to 
significantly greater reductions in IBS symptom severity scores 
compared to the standard low-FODMAP diet.38 The ENBIOSIS 
system utilized an ML algorithm trained on publicly available gut 
microbiota and nutrient interaction databases to generate individu-
alized diet plans, which also promoted favorable shifts in microbial 
diversity and composition 38. Additional evidence from a clinical 
trial conducted in patients with mixed-type IBS demonstrated that 
AI-based dietary modulation achieved a classification accuracy of 
91% (area under the curve = 0.964) in distinguishing microbiome-
based IBS phenotypes and significantly improved gastrointestinal 
symptoms and patient-reported outcomes compared to conven-
tional dietary management.38 In a larger multicenter randomized 
controlled trial, Tunali et al.39 found that AI-assisted personalized 
diets outperformed the FODMAP diet in reducing IBS symptoms, 
improving quality of life, and shifting microbiome diversity across 
all IBS subtypes. The personalized diet group showed significantly 
greater reductions in symptom severity and anxiety levels, with 
microbial shifts suggestive of healthier gut composition.

Beyond personalized intervention, AI technologies are increas-
ingly employed for the stratification and diagnosis of IBS sub-
types. ML models, including XGBoost, logistic regression, and 
support vector machines, have been developed to classify IBS var-
iants using multidimensional input from gut microbiome profiles, 
fecal metabolomics, and breath-based volatile organic compound 
signatures.33 A systematic review identified 25 studies utilizing 
ML algorithms for IBS detection and management, many of which 
reported classification accuracies exceeding 90%.1 These findings 
demonstrate that AI can deconstruct microbiota-mediated hetero-
geneity to support individualized dietary and therapeutic strategies 
in functional gastrointestinal disorders.

In IBD, AI applications extend beyond classification to encom-
pass dynamic monitoring and dietary management. Mobile health 
technologies, integrated with AI algorithms, collect real-time data 
on symptoms, medication adherence, and dietary habits. These 
systems synthesize patient-reported outcomes into personalized 
dashboards that facilitate early identification of disease flare-ups, 
support tailored nutritional guidance, and empower both patients 
and clinicians to adopt proactive care strategies.20

Collectively, these developments reflect a shift from population-
based nutritional advice to microbiome-informed, AI-personalized 
dietary strategies in gastroenterology. By capturing the dynamic 
interplay between microbial ecosystems, dietary exposures, and 
host physiology, AI holds substantial promise for enabling preci-
sion nutrition in both functional and inflammatory gastrointestinal 
diseases.

AI-enabled personalization in MASLD and hepatology
MASLD remains the most prevalent chronic liver condition 
worldwide.40,41 Although pharmacological progress has recently 
emerged, such as the 2024 U.S. Food and Drug Administration 
approval of resmetirom for noncirrhotic MASLD with fibrosis, 
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personalized lifestyle and dietary interventions continue to be cen-
tral to MASLD management.42 However, the marked metabolic 
heterogeneity among individuals poses significant challenges to 
standardized dietary strategies.43–45 In this context, AI technolo-
gies are increasingly being utilized to capture individual variabil-
ity, integrate multi-dimensional data, and facilitate precision nutri-
tion therapies tailored to metabolic profiles.

One of the most notable advancements in this area involves the 
use of ML to predict individual postprandial glycemic respons-
es.2 In a pivotal study involving over 800 individuals and 46,898 
meals, continuous glucose monitoring data were combined with 
clinical, behavioral, and gut microbiota variables to train a gradi-
ent-boosted regression model. This model was able to accurately 
predict an individual’s glycemic response to specific foods and 
meals, enabling the formulation of personalized dietary recom-
mendations tailored to optimize metabolic outcomes. Compared to 
conventional dietetic guidance, the AI-generated diet plans led to 
significantly improved glycemic control and favorable shifts in gut 
microbial composition and diversity.46

Subsequent interventions have confirmed the utility of this 
approach in broader populations. The implementation of digital 
phenotyping, via smartphones and wearable technologies such as 
smart scales, sleep monitors, and physical activity trackers, further 
enhances AI’s capabilities. These devices generate continuous, 
real-time data (e.g., circadian rhythm patterns, step counts, meal 
timing) that can be fed into adaptive ML systems. Such integra-
tion allows for dynamic adjustments to dietary plans based on real-
world behaviors, supporting sustained adherence and improved 
long-term outcomes in MASLD management.43,46–48

Beyond glycemic control, AI technologies are being employed 
to decipher complex nutrient–gene–microbiota interactions using 
integrative omics approaches. Emerging personalized nutritional 
geometry models aim to optimize macronutrient distribution based 
on individual hepatic lipid metabolism profiles, insulin sensitivity, 
and microbiota composition. These models incorporate genomic 
variants (e.g., PNPLA3, TM6SF2), microbial taxa abundances, 
and dietary intake to generate targeted diet prescriptions that re-
duce hepatic steatosis and metabolic dysfunction. Sensor-derived 
data such as heart rate variability and sleep efficiency can also be 
utilized to refine these models further, producing adaptive, patient-
specific nutritional protocols.48

In hepatology more broadly, AI applications are expanding 
into diagnostic and prognostic domains. AI systems assist with 
fibrosis staging, hepatotoxicity prediction, and post-transplant 
risk stratification by analyzing imaging, histology, and EHRs. ML 
algorithms have been trained to predict fibrosis progression, cir-
rhosis risk, and post-liver transplant outcomes by integrating im-
aging, histopathological, and EHR data. Tools like AI4FoodDB 
centralize multimodal datasets, including food images, biosensor 
data, biomarkers, and omics, to enable robust model training and 
hypothesis testing in hepatometabolic disorders.31 These systems 
offer enhanced accuracy in staging liver disease and guiding clini-
cal decision-making. Additionally, AI tools are being explored for 
monitoring dietary exposures and predicting hepatotoxicity during 
pharmacological treatment, especially in settings where polyphar-
macy and supplement use complicate clinical risk assessments.5,7

These developments highlight the transformative potential of 
AI in the nutritional management of MASLD and broader hepato-
logical conditions. By leveraging high-throughput omics, continu-
ous behavioral monitoring, and advanced learning algorithms, AI 
enables a transition from generalized dietary recommendations to 
precision nutrition models that are both dynamic and individual-

ized. Such systems promise not only to optimize metabolic health 
but also to reduce disease progression and improve quality of life 
in patients with liver disorders.

Challenges, ethical concerns, and future perspectives for 
AI-driven personalized nutrition in gastroenterology and 
hepatology
Despite its transformative potential, the implementation of AI 
in personalized nutrition for gastroenterology and hepatology is 
fraught with complex challenges that must be addressed to ensure 
clinical efficacy, patient trust, and ethical integrity. These include 
data-related limitations, algorithmic bias, regulatory gaps, stake-
holder skepticism, financial barriers, and practical considerations 
in diverse healthcare settings.

One of the most persistent ethical concerns is the lack of transpar-
ency in DL and generative models, which often function as “black 
boxes.” These models can yield clinically significant outputs without 
providing interpretable justifications, thus complicating informed 
consent and eroding trust among both patients and healthcare pro-
fessionals.49 Furthermore, when AI is used to generate personalized 
dietary recommendations based on sensitive data, such as genomics, 
metabolomics, and gut microbiome profiles, issues of data privacy, 
ownership, and consent become even more pronounced. Discrimi-
natory risks associated with the use of genetic or microbiome data 
in insurance or employment contexts highlight the urgent need for 
ethical frameworks and legislative oversight.5,7

Technical limitations further complicate AI deployment in clini-
cal nutrition. Data collected from different sources, ranging from 
food diaries and wearable sensors to sequencing platforms, vary 
widely in structure and quality. Inconsistent methodologies in mi-
crobiome sequencing and dietary assessment introduce bias and 
limit the generalizability of AI models.5 Standardization of data 
formats, preprocessing pipelines, and analytical frameworks is es-
sential for creating reliable, reproducible, and transferable models.

Federated learning, which enables AI models to be trained 
on decentralized datasets while preserving patient privacy, has 
emerged as a potential solution but requires sophisticated infra-
structure and expertise. The lack of uniformity in algorithm valida-
tion, across metrics such as sensitivity, specificity, area under the 
receiver operating characteristic curve, and real-world applicabil-
ity, also raises questions about the clinical readiness of many AI 
tools.7 Most studies to date have been retrospective, single-center, 
and observational in nature, further underlining the need for large, 
prospective, multicenter trials and real-world evaluations.

Bias in training data remains a significant hurdle, particularly 
when datasets fail to capture population heterogeneity. Underrepre-
sented groups are at increased risk of receiving inaccurate or inequi-
table recommendations. This is especially concerning in nutrition, 
where sociocultural dietary patterns, language, and access to food 
resources vary widely. High-dimensional data, such as microbiome 
features, exacerbate these problems by increasing the likelihood of 
overfitting and reducing the external validity of models.

Financial constraints, infrastructural limitations, and digital ine-
quality also pose formidable barriers. The high cost of implement-
ing AI, through computational infrastructure, software licenses, 
and personnel training, may be prohibitive for under-resourced 
institutions and countries. Individuals in rural or underserved areas 
may lack access to digital tools and internet connectivity, exclud-
ing them from the benefits of AI-driven dietary care. Promoting 
digital equity and inclusive design is therefore a crucial part of 
making AI accessible and effective for all.
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The success of AI in this field also depends on widespread ac-
ceptance and engagement by stakeholders, including healthcare 
professionals and patients. Clinicians may be reluctant to adopt 
AI systems unless they are easy to integrate into workflows, dem-
onstrate clear benefits, and preserve their role in decision-making. 
Patients, particularly older adults, may express concerns over the 
impersonality of AI systems and fear privacy violations. These 
concerns must be addressed through patient-centered design, edu-
cational initiatives, and transparent communication.

Education and interdisciplinary collaboration will play a foun-
dational role in overcoming these barriers. There is a growing need 
to train professionals who can operate at the intersection of nutri-
tion science, computer science, statistics, and medicine. Academic 
institutions must incorporate AI, data science, and ethics into the 
curricula of dietitians and gastroenterologists. Workshops and 
training programs aimed at upskilling healthcare providers and 
fostering collaboration between technical and clinical experts are 
also essential.5

Opportunities for future development are substantial. AI models 
can be enhanced using synthetic datasets and generative approach-
es, which preserve patient privacy while expanding data availabil-
ity. Emerging platforms such as AI4FoodDB and ENBIOSIS il-
lustrate the potential of integrating behavioral, clinical, and omics 
data into robust personalized nutrition algorithms. Furthermore, AI 
holds promise in detecting causal relationships through longitudi-
nal data analysis and experimental interventions, key elements for 
advancing precision nutrition beyond observational correlation.

From a regulatory perspective, AI tools in clinical nutrition 

must be treated as medical devices and subjected to rigorous evalu-
ation by authorities such as the U.S. Food and Drug Administra-
tion. This includes ensuring transparency in algorithmic logic, 
establishing thresholds for performance validation, and clarifying 
liability in the case of AI-driven errors.7

As the use of AI expands, so too must safeguards to ensure ethi-
cal, inclusive, and equitable implementation. These include secure 
and privacy-respecting data infrastructures, clear informed consent 
protocols, measures to address bias and algorithmic fairness, and 
accessibility for underserved populations. Addressing the limita-
tions and challenges outlined above will be key to harnessing AI’s 
full potential in gastroenterology and hepatology.

In summary, while AI offers powerful tools to personalize nutri-
tion and improve outcomes in gastrointestinal and hepatic health, 
its promise can only be fully realized through ethical vigilance, 
methodological rigor, and interdisciplinary collaboration. Suc-
cessful integration of AI into clinical nutrition depends not only 
on technological innovation but also on transparent governance, 
equitable data representation, and robust validation in diverse 
populations. Moreover, empowering healthcare professionals and 
patients through education and inclusive digital solutions is critical 
to ensuring trust and sustainability.

To encapsulate these themes, Figure 1 presents a visual overview 
of the current applications, key technologies, and future directions 
of AI in personalized nutrition within the fields of gastroenterol-
ogy and hepatology. It illustrates how diverse sources of data, such 
as microbiome analyses, wearable sensor outputs, and EHRs, can 
be processed using AI systems to develop tailored dietary strate-

Fig. 1. AI-driven personalized nutrition in gastroenterology and hepatology: clinical applications and future impact. An overview of how AI systems in-
tegrate patient-generated and clinical data, including genomic, nutritional, biometric, and symptom-related inputs, to deliver AI-enabled clinical nutrition 
solutions in gastroenterology and hepatology. Key AI technologies such as machine learning, deep learning, natural language processing, and large language 
models are applied to predict dietary responses, interpret complex omics data, and deliver real-time personalized nutrition advice. The left side of the figure 
shows the flow from data sources to clinical application. The right side outlines current challenges and future directions, including opportunities. AI, artificial 
intelligence; RCT, randomized controlled trial.
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gies for conditions including IBS, IBD, MASLD, GERD, and ce-
liac disease. This framework highlights the clinical potential of AI 
while also emphasizing the need to address challenges related to 
data quality, model fairness, ethical concerns, and equitable access 
to ensure successful integration into healthcare practice.

Conclusions
AI has the potential to transform personalized nutrition in gastroen-
terology and hepatology by integrating high-dimensional clinical, 
behavioral, and omics data into adaptive dietary strategies. Applica-
tions ranging from microbiome-guided diet personalization in IBS 
and IBD to predictive modeling of metabolic responses in MASLD 
demonstrate how AI can enhance individualization, adherence, and 
outcomes. However, this review also acknowledges inherent limi-
tations, primarily regarding the choice to adopt a narrative design. 
While this approach allows for a broad synthesis of heterogeneous 
technologies and early-stage applications, it lacks the structured 
search strategy and quantitative rigor of a systematic review. Conse-
quently, no quantitative meta-analysis was performed, and the selec-
tion of studies may be subject to inherent bias. Furthermore, many 
cited AI applications remain in preliminary validation stages, neces-
sitating cautious interpretation of their immediate clinical utility. 
These constraints highlight the need for more rigorous, large-scale, 
and standardized clinical investigations.

Nevertheless, the review outlines clear strengths, including the 
integration of multidimensional data, exploration of cutting-edge 
technologies such as LLMs and wearable tools, and a forward-
looking perspective on ethical and regulatory frameworks. Bridg-
ing current gaps will require interdisciplinary collaboration, robust 
evaluation strategies, and investment in data standardization and 
digital equity. As AI technologies evolve, their successful integra-
tion into clinical nutrition workflows can redefine the management 
of digestive and liver diseases, making care more precise, proac-
tive, and patient-centered.
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